Rumba C++ SDK
ImathRoots.h
Go to the documentation of this file.
1 //
3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // * Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
34 
35 
36 
37 #ifndef INCLUDED_IMATHROOTS_H
38 #define INCLUDED_IMATHROOTS_H
39 
40 //---------------------------------------------------------------------
41 //
42 // Functions to solve linear, quadratic or cubic equations
43 //
44 //---------------------------------------------------------------------
45 
46 #include <ImathMath.h>
47 #include <complex>
48 
49 namespace Imath {
50 
51 //--------------------------------------------------------------------------
52 // Find the real solutions of a linear, quadratic or cubic equation:
53 //
54 // function equation solved
55 //
56 // solveLinear (a, b, x) a * x + b == 0
57 // solveQuadratic (a, b, c, x) a * x*x + b * x + c == 0
58 // solveNormalizedCubic (r, s, t, x) x*x*x + r * x*x + s * x + t == 0
59 // solveCubic (a, b, c, d, x) a * x*x*x + b * x*x + c * x + d == 0
60 //
61 // Return value:
62 //
63 // 3 three real solutions, stored in x[0], x[1] and x[2]
64 // 2 two real solutions, stored in x[0] and x[1]
65 // 1 one real solution, stored in x[1]
66 // 0 no real solutions
67 // -1 all real numbers are solutions
68 //
69 // Notes:
70 //
71 // * It is possible that an equation has real solutions, but that the
72 // solutions (or some intermediate result) are not representable.
73 // In this case, either some of the solutions returned are invalid
74 // (nan or infinity), or, if floating-point exceptions have been
75 // enabled with Iex::mathExcOn(), an Iex::MathExc exception is
76 // thrown.
77 //
78 // * Cubic equations are solved using Cardano's Formula; even though
79 // only real solutions are produced, some intermediate results are
80 // complex (std::complex<T>).
81 //
82 //--------------------------------------------------------------------------
83 
84 template <class T> int solveLinear (T a, T b, T &x);
85 template <class T> int solveQuadratic (T a, T b, T c, T x[2]);
86 template <class T> int solveNormalizedCubic (T r, T s, T t, T x[3]);
87 template <class T> int solveCubic (T a, T b, T c, T d, T x[3]);
88 
89 
90 //---------------
91 // Implementation
92 //---------------
93 
94 template <class T>
95 int
96 solveLinear (T a, T b, T &x)
97 {
98  if (a != 0)
99  {
100  x = -b / a;
101  return 1;
102  }
103  else if (b != 0)
104  {
105  return 0;
106  }
107  else
108  {
109  return -1;
110  }
111 }
112 
113 
114 template <class T>
115 int
116 solveQuadratic (T a, T b, T c, T x[2])
117 {
118  if (a == 0)
119  {
120  return solveLinear (b, c, x[0]);
121  }
122  else
123  {
124  T D = b * b - 4 * a * c;
125 
126  if (D > 0)
127  {
128  T s = Math<T>::sqrt (D);
129 
130  x[0] = (-b + s) / (2 * a);
131  x[1] = (-b - s) / (2 * a);
132  return 2;
133  }
134  if (D == 0)
135  {
136  x[0] = -b / (2 * a);
137  return 1;
138  }
139  else
140  {
141  return 0;
142  }
143  }
144 }
145 
146 
147 template <class T>
148 int
149 solveNormalizedCubic (T r, T s, T t, T x[3])
150 {
151  T p = (3 * s - r * r) / 3;
152  T q = 2 * r * r * r / 27 - r * s / 3 + t;
153  T p3 = p / 3;
154  T q2 = q / 2;
155  T D = p3 * p3 * p3 + q2 * q2;
156 
157  if (D == 0 && p3 == 0)
158  {
159  x[0] = -r / 3;
160  x[1] = -r / 3;
161  x[2] = -r / 3;
162  return 1;
163  }
164 
165  std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)),
166  T (1) / T (3));
167 
168  std::complex<T> v = -p / (T (3) * u);
169 
170  const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits
171  // for long double
172  std::complex<T> y0 (u + v);
173 
174  std::complex<T> y1 (-(u + v) / T (2) +
175  (u - v) / T (2) * std::complex<T> (0, sqrt3));
176 
177  std::complex<T> y2 (-(u + v) / T (2) -
178  (u - v) / T (2) * std::complex<T> (0, sqrt3));
179 
180  if (D > 0)
181  {
182  x[0] = y0.real() - r / 3;
183  return 1;
184  }
185  else if (D == 0)
186  {
187  x[0] = y0.real() - r / 3;
188  x[1] = y1.real() - r / 3;
189  return 2;
190  }
191  else
192  {
193  x[0] = y0.real() - r / 3;
194  x[1] = y1.real() - r / 3;
195  x[2] = y2.real() - r / 3;
196  return 3;
197  }
198 }
199 
200 
201 template <class T>
202 int
203 solveCubic (T a, T b, T c, T d, T x[3])
204 {
205  if (a == 0)
206  {
207  return solveQuadratic (b, c, d, x);
208  }
209  else
210  {
211  return solveNormalizedCubic (b / a, c / a, d / a, x);
212  }
213 }
214 
215 
216 } // namespace Imath
217 
218 #endif
int solveLinear(T a, T b, T &x)
Definition: ImathRoots.h:96
int solveNormalizedCubic(T r, T s, T t, T x[3])
Definition: ImathRoots.h:149
int solveCubic(T a, T b, T c, T d, T x[3])
Definition: ImathRoots.h:203
Definition: ImathBox.h:67
static T sqrt(T x)
Definition: ImathMath.h:114
int solveQuadratic(T a, T b, T c, T x[2])
Definition: ImathRoots.h:116